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Abstract

Using the shift-operator technique, a compact formula for the Fourier transform
of a product of two Slater-type orbitals located on different atomic centers is
derived. The result is valid for arbitrary quantum numbers and was found to be
numerically stable for a wide range of geometrical parameters and momenta.
Details of the implementation are presented together with benchmark data for
representative integrals. We also discuss the assets and drawbacks of alternative
algorithms available and analyze the numerical efficiency of the new scheme.

PACS numbers: 71.15.−m, 71.15.Ap

1. Introduction

The electron–electron interaction as quantified in Coulomb or exchange integrals is at the
heart of every quantum-mechanical treatment of condensed matter. Due to the simple
structure of the Coulomb operator in reciprocal space, Fourier transform techniques allow
for the transformation of the double integral over real space into a compact single integral in
momentum space. Let us consider a typical two-electron repulsion integral as an example

I =
∫ ∫

φμ(r − RA)φν(r − RB)
1

|r − r′|φα(r′ − RC)φβ(r′ − RD) dr dr′. (1)

If we denote the Fourier transform of the product of orbitals φμ(r − RA) and φν(r − RB) by
φμν(RA, RB, q), we may very schematically write (thorough definitions follow later)

I ∝
∫

φμν(RA, RB,−q)
1

q2
φαβ(RC, RD, q) dq. (2)

Methods along these lines date back at least to Bonham et al [1, 2] and are the de-facto
standard for systems with translational symmetry. For these boundary conditions, plane
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waves are the most natural type of basis functions, thanks also to their trivial behavior under
Fourier transformation.

In recent years, correlated electronic structure methods such as the GW approximation of
Hedin4, which were originally developed in the context of band structure calculations, are now
also applied to systems where translational symmetry is broken. Examples of this kind include
super lattices, defects, surfaces and even atoms or molecules [4–8]. Obviously, atomic orbital
basis sets are more appropriate in these situations and reduce the number of basis functions
needed to achieve a certain accuracy considerably. Among the localized basis sets, Slater and
Gaussian-type orbitals are the most prominent. The latter have the advantage that the Fourier
transform of orbital products is relatively easy to obtain, while usually much less Slater than
Gaussian-type orbitals are required to represent atomic or molecular electron densities. In
the context of the Fourier transform methods mentioned above, the choice of Slater versus
Gaussian is hence intimately connected with the ability to perform the Fourier transform of
basis function products efficiently.

A direct numerical quadrature of the three-dimensional integral over reciprocal space
using Fast Fourier Transform techniques is not advisable due to high memory consumption,
low computational speed and very limited numerical accuracy. As an alternative, Slater
functions may be fitted to a fixed linear combination of Gaussian-type orbitals like done,
for example, in the popular Pople basis sets often employed in quantum chemistry [9, 10].
However, in this case the electronic structure calculation could have been performed entirely
in terms of Gaussians in the first place with additional variational freedom. Several attempts
to directly perform the intricate integration of Slater products analytically are documented in
the literature. While the mentioned original work of Bonham [1, 2] was restricted to s-type
functions, Bentley and Stewart [11] derived an expression for arbitrary angular momentum
states involving an infinite series. Later, Junker [12] obtained a result in terms of finite sums
and one-dimensional numerical integrations, while Straton [13, 14] was able to provide general
formulae for the Fourier transform of the product of more than two orbitals.

This earlier work meets some but not all desired properties of a general solution. The
latter includes the validity for arbitrary quantum numbers, the possibility for a straightforward
implementation on a computer as well as high numerical efficiency and stability. Moreover,
the solution should be amenable to partial wave analysis, in order to allow for an efficient
evaluation of two-electron integrals in a second step. This point is maybe not so important for
periodic systems, where quadrature of the remaining integral over reciprocal space in (2) may
be accomplished by a summation over special k-point meshes [15], involving only a small
number of integrand evaluations. For finite systems however, this point becomes crucial. Here
it should be mentioned that the efficient evaluation of Fourier transforms is only a first step in
a fast computation of multi-center integrals.

An approach which combines most of the above-mentioned merits was proposed by
Trivedi and Steinborn [16]. The authors provide formulae for the Fourier transform over
products of so-called B-functions. These B-functions can be transformed into Slater-type
orbitals without loss of generality and accuracy. Subsequently, this technique was used by
Grotendorst and Steinborn [17] to evaluate a variety of multi-center integrals required in
electronic structure calculations. Alternative representations of the transforms are given in
[18] and in the dissertation of Homeier [19], which also contains a deeper discussion of the
B-function formalism together with numerical results and benchmark data.

4 In Hedin’s GW approximation, the self-energy operator of quasiparticle theory is given by the product of the
one-particle Green’s function G and the screened Coulomb operator W, see [3].
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In this work, we propose an alternative to the Trivedi–Steinborn formula, which is directly
formulated in terms of Slater-type orbitals. The derivation is based on the shift-operator
technique, which is discussed in the following section. The approach may be seen as a
generalization of a recent result for overlap integrals [20] and meets all important criteria
established above.

The more general aim of this contribution is to facilitate the utilization of Slater-type
orbitals in the simulation of periodic and quasi-periodic systems. Currently, only a very
limited number of codes employ this kind of basis set [21, 22], due to the apparent difficulties
in the numerical implementation. The development of adapted algorithms is therefore of
key importance in order to unveil the well-known benefits of Slater-type orbitals in atomistic
calculations.

2. Definitions and the shift-operator approach

We consider real unnormalized Slater-type orbitals (STO) of the form

χnlm(r, ζ ) = rn−1 e−ζ rzm
l (r), (3)

where n = ñ − l in terms of the principle quantum number ñ. The regular harmonics zm
l are

related to the more familiar real spherical harmonics Ỹlm:

zm
l (r) = rlỸlm(r̂)

Ỹlm(r̂) = (−1)mP m
l (cos θ) cos(mφ) m � 0 (4)

Ỹl−m(r̂) = (−1)mP m
l (cos θ) sin(mφ) m > 0,

where P m
l (cos θ) denote associated Legendre polynomials as defined in [23, equation (8.812)].

In the literature on molecular integrals also complex regular harmonicsYm
l are often employed.

The normalized Ym
l defined in [24, p 1264, equation (B.4)–(B.6)] are related to our choice of

real regular harmonics in (4) as follows:

zm
l =

[
π(l + |m|)!

(2l + 1)(l − |m|)!
] 1

2 (
(−1)mYm

l + Y−m
l

)
m � 0

(5)

z−m
l = −i

[
π(l + |m|)!

(2l + 1)(l − |m|)!
] 1

2 (
(−1)mYm

l − Y−m
l

)
m > 0.

Square normalized STO χ̄nlm are readily obtained as

χ̄nlm =
√

(2l + 1)

2π(1 + δm0)

(l − |m|)!
(l + |m|)!

(2ζ )2n+2l+1

(2n + 2l)!
χnlm. (6)

The idea of the shift-operator approach is to evaluate the desired integral of interest,
e.g., overlap or two-electron repulsion, first for the simplest STO of s-symmetry, for which
a quadrature is often relatively easy. In a second step, the quantum numbers are then raised
by operators that involve derivatives with respect to parameters of the integral, like decay
constants and inter-center distance. The benefit of such raising and lowering operators in the
solution of molecular integrals was recognized quite early and exploited by various authors
[25–30].

In this approach, a STO centered at RI as a function of rI = r − RI may be written as

χnlm(rI , ζ ) = �n
lm(∇I )

e−ζ rI

rI

, (7)
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with ∇I denoting the vector (∂/∂XI , ∂/∂YI , ∂/∂ZI ) and

�n
lm(∇I ) = zm

l (∇I )

(
− ∂

∂ζ

)n (
− 1

ζ

∂

∂ζ

)l

. (8)

A detailed discussion of the properties of Ym
l (∇I ), related to zm

l (∇I ) by means of (5), is
provided in a recent review by Weniger [24].

The form in (8) is now used to construct the Fourier transform of two-center STO products
which are in the focus of this work:

I
n1l1m1
n2l2m2

(k, ζ1, ζ2, RI , RJ ) =
∫

dr eikrχn1l1m1(rI , ζ1)χn2l2m2(rJ , ζ2) (9)

= �
n1
l1m1

(∇I )�
n2
l2m2

(∇J )

∫
dr eikrχ000(rI , ζ1)χ000(rJ , ζ2). (10)

The shift-operator approach is applicable if the basic integrals (I 000
000 in our case) have

a closed form which can be easily differentiated with respect to the outer parameters. The
following section shows that this is indeed the case for the present Fourier transform.

3. The basic integral

As shown by Rico and co-workers [31], the product of two s-type STO can be expressed as a
one-dimensional integral which is suitable for further manipulations

χ000(rI , ζ1)χ000(rJ , ζ2) = 1

π

∫ 1

0
du[u(1 − u)]−

3
2 ζ 2

u k̂−1

⎛
⎝ζu

√
R2 +

r2
u

u(1 − u)

⎞
⎠ , (11)

with R = RJ − RI , Ru = uRJ + (1 − u)RI , ru = r − Ru, ζ
2
u = ζ 2

1 u + ζ 2
2 (1 − u)

and k̂ν(x) = xνKν(x), where Kν(x) is the modified Bessel function of the second kind
[23, equation (8.407)]. Please note that for k̂ν , often referred to as the reduced Bessel function,
slightly differing notations and definitions exist in the literature. See, for example, the work
of Shavitt [32, p 15, equation (55)] and Steinborn and Filter [33, equations (3.1)–(3.2)].

After insertion of (11) into (9) and change of the integration variable to ru, the angular
integration is readily performed by expanding the exponential in partial waves

eikr =
√

π

2kr

∞∑
l=0

il(2l + 1)Pl(cos θ)Jl+ 1
2
(kr), θ = � (k, r), (12)

and using the fact that the remainder of the integrand has s-symmetry. The result reads

I 000
000 (k, ζ1, ζ2, RI , RJ ) = 4

k

∫ 1

0
du eikRu [u(1 − u)]−

3
2 ζ 2

u (13)

×
∫ ∞

0
druru sin(kru)k̂−1

⎛
⎝ζu

√
R2 +

r2
u

u(1 − u)

⎞
⎠ . (14)

The remaining radial integral is known [23, equation (6.726.3)], which leads to the final result
for the basic integral:

I 000
000 (k, ζ1, ζ2, RI , RJ ) =

√
8πR

∫ 1

0
du eikRu k̂− 1

2

(
R

√
ζ 2
u + k2u(1 − u)

)
. (15)

For vanishing momentum transfer this formula reduces to the known result for the
corresponding overlap integral as given, e.g., by Ema et al [20]. For this special case,
the pending integral may be solved analytically and is related to confluent hypergeometric
functions. In general, however, an evaluation based on the numerical integration is unavoidable
at this point.
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4. Transforms for higher quantum numbers

Using the shift-operator approach, Fourier transforms for higher quantum numbers may now
be written as

I
n1l1m1
n2l2m2

(k, ζ1, ζ2, RI , RJ ) = z
m1
l1

(∇I )z
m2
l2

(∇J )

∫ 1

0
du eikRuh

n1l1
n2l2

(k, ζ1, ζ2, R, u) (16)

with

h
n1l1
n2l2

(k, ζ1, ζ2, R, u) =
√

8πR

(
− ∂

∂ζ1

)n1
(

− 1

ζ1

∂

∂ζ1

)l1

×
(

− ∂

∂ζ2

)n2
(

− 1

ζ2

∂

∂ζ2

)l2

k̂− 1
2

(
R

√
ζ 2
u + k2u(1 − u)

)
, (17)

where, as shown in appendix A, the derivatives with respect to the decay constants are relatively
easy to perform. The action of the solid harmonics on the integral is more involved and requires
further consideration. We proceed by introducing the equality

zm
l (∇)(fg) =

l∑
l′=0

l−l′∑
m′=−(l−l′)

l′∑
m′′=−l′

dlm
l′m′m′′

(
zm′
l−l′(∇)f

)(
zm′′
l′ (∇)g

)
(18)

for arbitrary functions f (R), g(R). This relation is proven in appendix B using the Leibniz rule
for the differentiation of products together with the completeness and orthogonality relations
of spherical harmonics. Alternative proofs were given by Dunlap [34] and Weniger [24].

Values for the coefficients dlm
l′m′m′′ can be obtained by straightforward differentiation for

small quantum numbers. In general, the use of symbolic computation software allows the
determination once and for all. Special cases include dlm

0m′m′′ = δm′mδm′′0 and dlm
lm′m′′ = δm′0δm′′m.

Applying (18) to (16), we arrive at

I
n1l1m1
n2l2m2

(k, ζ1, ζ2, RI , RJ ) =
l1∑

l′1=0

il1−l′1

l1−l′1∑
m1

′=−(l1−l′1)

l′1∑
m1

′′=−l′1

d
l1m1

l′1m1
′m1

′′

×
l2∑

l′2=0

il2−l′2

l2−l′2∑
m2

′=−(l2−l′2)

l′2∑
m2

′′=−l′2

d
l2m2

l′2m2
′m2

′′

∫ 1

0
du

× [ul1−l′1(1 − u)l2−l′2z
m1

′
l1−l′1

(k)z
m2

′
l2−l′2

(k) eikRu
]

× [zm1
′′

l′1
(∇I )z

m2
′′

l′2
(∇J )h

n1l1
n2l2

(k, ζ1, ζ2, R, u)
]
, (19)

where we used the homogeneity of regular harmonics and the fact that plane waves are
eigenfunctions of the momentum operator. The remaining derivation parallels the work of
Ema et al [20] on overlap integrals and we will follow the nomenclature used there as close as
possible to facilitate comparison. Since h

n1l1
n2l2

in the last line of (19) depends only on the norm
of R, the following theorem may be applied which goes back to Hobson [35]:

z
m1
l1

(∇I )z
m2
l2

(∇J )f (R) = (−1)l1
L<∑
k=0

2−k

k!

[∇2kz
m1
l1

(R)z
m2
l2

(R)
] ( 1

R

∂

∂R

)l1+l2−k

f (R) (20)

= (−1)l1
L<∑
k=0

P l1m1l2m2
k (R)

(
1

R

∂

∂R

)l1+l2−k

f (R). (21)
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Here L< = min(l1, l2) and P l1m1l2m2
k are given by

P l1m1l2m2
k (R) = 2k

k!

L<∑
l=k

l!(l1 + l2 − l + 3/2)R2l−2k

(l − k)!(l1 + l2 − l − k + 3/2)

∑
m

c
l1m1l2m2
l1+l2−2lmzm

l1+l2−2l (R), (22)

where the coefficients c
l1m1l2m2
l1+l2−2lm are directly related to real Gaunt coefficients (for a detailed

derivation of (20)–(22) see appendix C).
Next we define the quantity S̃n1l1n2l2

l′1l
′
2k

(this is a generalization of Sn1l1n2l2
k in the work of

Ema et al [20]), which is further discussed in appendix A:

S̃n1l1n2l2
l′1l

′
2k

(k, ζ1, ζ2, RI , RJ )

=
∫ 1

0
du eikRuul2−l′2(1 − u)l1−l′1

[(
− 1

R

∂

∂R

)l′1+l′2−k

h
n1l1
n2l2

(k, ζ1, ζ2, R, u)

]

= (−1)l
′
1+l′2−kR1+2(l1+l2−l′1−l′2)

n1∑
i=� n1+1

2 	

n2∑
j=� n2+1

2 	
c
n1
i (ζ1)c

n2
j (ζ2)

×
√

8π

∫ 1

0
du eikRuuμ(1 − u)νk̂α

(
R

√
ζ 2
u + k2u(1 − u)

)
, (23)

with �r	 denoting the integer part of r and

μ = l1 + l2 − l′2 + i; ν = l1 + l2 − l′1 + j ;
α = −1/2 − l1 − l2 + l′1 + l′2 − i − j − k (24)

cn
i (ζ ) = (−1)n+in!(2ζ 2R2)i

(2ζ )n(2i − n)!(n − i)!
.

With these definitions we reach the main result of this work

I
n1l1m1
n2l2m2

(k, ζ1, ζ2, RI , RJ ) =
l1∑

l′1=0

(−1)l
′
1 il1−l′1

l1−l′1∑
m1

′=−(l1−l′1)

z
m1

′
l1−l′1

(k)

l′1∑
m1

′′=−l′1

d
l1m1

l′1m1
′m1

′′

×
l2∑

l′2=0

il2−l′2

l2−l′2∑
m2

′=−(l2−l′2)

z
m2

′
l2−l′2

(k)

l′2∑
m2

′′=−l′2

d
l2m2

l′2m2
′m2

′′

×
L<∑
k=0

P l′1m
′′
1 l

′
2m

′′
2

k (R)S̃n1l1n2l2
l′1l

′
2k

(k, ζ1, ζ2, RI , RJ ), (25)

where the product of the two regular harmonics could be rewritten as a sum over a single
harmonic, if the interest lies in the partial-wave analysis of the Fourier transform. It can be
easily checked that (25) reduces to the known result for the overlap of STO in the limit of
vanishing momentum k.

It is now interesting to compare (25) with the related formula of Trivedi and Steinborn for
the Fourier transform of B-function products [16]. At first glance the Trivedi–Steinborn result
looks more compact and involves a lower number of summations. This is due to the favorable
behavior of B-functions under the Fourier transform. If one is interested in STO, however,
as it is often the case in quantum chemical or condensed matter problems, equation (25)
provides the answer directly, while usage of the Trivedi–Steinborn form requires a summation
over several individual integrals. Admittedly, for modest values of n only a small number of
B-functions are necessary to represent a certain STO.

6
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There is however another point which should be important in terms of efficiency. In a
numerical quadrature a large number of function evaluations are necessary, especially if one
tries to achieve high precision. In the Trivedi–Steinborn form regular spherical harmonics
appear under the pending one-dimensional integral, while the integrand in (23) is simpler.
Moreover, the quantity S̃n1l1n2l2

l′1l
′
2k

does not depend on magnetic quantum numbers and can be
precomputed for every l′1, l

′
2 and stored in an array of dimension k.

5. Implementation details

In this paragraph we provide information on the implementation of the derived expressions,
discuss the issue of numerical stability and give some benchmark data.

The formulae of the last section are also valid in the special case of two STO located on
the same center, due to the following property of the modified McDonald function:

lim
x→0

x2ν k̂−ν(x) = 2ν−1(ν − 1)! ∀ ν > 0. (26)

Nevertheless, it is computationally much more efficient to replace the STO product by a sum
over single STO using Gaunt coefficients. In this way the known analytical result for the
Fourier transform of individual STO given by Belkić and Taylor [36] may be employed. Since
the routine for the computation of real Gaunt coefficients is called extremely often also in the
two-center case, an efficient strategy for their evaluation becomes very important. We follow
the recent work of Pinchon and Hoggan [37], who devised a new index function to retrieve
precomputed Gaunts for complex spherical harmonics. Only those coefficients that do not
vanish due to selection rules are actually stored initially. Real Gaunt coefficients may then be
obtained as outlined by Homeier and Steinborn [38].

The remaining computational bottleneck is given by the numerical integration. As already
mentioned in the previous section, the term S̃n1l1n2l2

l′1l
′
2k

is constructed right after looping over l′1, l
′
2

as a one-dimensional temporary array. The integrals over given values of μ, ν and α in (24) are
computed only once and then stored, since they appear repeatedly for different combinations
of the summation variables. For the numerical quadrature itself, we use adaptive integration
as implemented in the qag routine of the QUADPACK library with a (7,15) Gauss–Kronrod rule
[39]. With this approach an accuracy of typically 14 significant figures is achieved for the
basic integrals as well as the overall Fourier transform.

The algorithm presented here is numerically stable for a wide range of quantum numbers,
inter-center distances and momenta k. In situations where the ratio of decay constants ζ1/ζ2

is large, we however do find a significant digital erosion. For example, we still found
13 figures accuracy for a certain integral with a decay constant ratio of 50, which reduced to
11 figures at a ratio of 100 and finally three figures at a ratio of 150. This drawback was also
observed in related earlier studies [17, 40] and possible remedies were suggested by Homeier
and Steinborn [41] and recently by Safouhi and Berlu [42]. In most real world applications
the atomic numbers of elements constituting the structure in question usually do not differ
grossly. If the interest is however in properties like electronic excited states or polarizabilities,
additional diffuse basis functions with small decay constants are required. In these cases a
careful and more sophisticated evaluation of the basic integrals is necessary as outlined for
example by Homeier and Steinborn [41]. In tables 1 and 2 we provide some benchmark
results for selected parameter values. The numerical error is estimated by a comparison with
a direct three-dimensional integration (equation (9)) performed with the computer algebra
package maple that features arbitrary precision arithmetic. The CPU timings of the algorithm
were performed on an Intel Pentium IV at 3.40 GHz. The evaluation of a Fourier transform

7
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Table 1. Fourier transforms over products of normalized STO which share the following
parameters: RI = (0.3, −0.6, 0.9), RJ = (1.8, 0.9, 0.1), k = (0.4, −0.7, 0.1), ñ1 = 5, ñ2 = 4
(principal quantum number), ζ1 = 3.0, ζ2 = 9.0.

l1 m1 l2 m2
∫

dr eikrχ̄n1l1m1 (rI , ζ1)χ̄n2l2m2 (rJ , ζ2)

0 0 0 0 1.3252 7422 8497 ×10−1 i 1.8979 8247 0877 ×10−2

1 1 0 0 1.4512 7601 7773 ×10−1 i 3.0116 4031 2294 ×10−2

1 −1 1 −1 −1.6452 5684 6177 ×10−1 −i 3.6525 2296 6886 ×10−2

1 −1 1 0 3.0597 8029 2345 ×10−2 i 7.9667 4828 0853 ×10−3

1 −1 1 1 −6.0005 5763 7932 ×10−2 i 1.6370 3748 7660 ×10−2

2 −2 2 2 5.3441 5583 8640 ×10−3 −i 1.4183 8452 6288 ×10−2

2 −1 2 2 −1.5707 4135 8199 ×10−2 i 1.0656 8041 5381 ×10−2

2 0 2 2 −2.3656 8841 5942 ×10−3 i 4.7624 2474 0227 ×10−3

2 1 2 2 8.0619 0229 2047 ×10−3 i 1.6691 6554 4101 ×10−2

2 2 2 2 −3.2683 5274 0242 ×10−2 −i 9.6119 2920 0390 ×10−3

Table 2. Comparison of accuracy and numerical efficiency of the algorithm presented in this
work with that of Trivedi and Steinborn in the implementation of Homeier and Steinborn [41].
Parameters for the various integrals are the same as in table 1. The provided number of significant
digits (Digits) is the minimum of the digits for real and imaginary part, respectively. CPU times in
ms (Time) correspond to the computation of (2l1 +1) × (2l2 +1) integrals and present an average
over 1000 evaluations.

This work Trivedi–Steinborn

l1 m1 l2 m2 Digits Time Digits Time

0 0 0 0 15 0.80 14 0.25
1 1 0 0 15 1.05 14 0.88
1 −1 1 −1 14 1.62 14 2.40
1 −1 1 0 14 13
1 −1 1 1 14 14
2 −2 2 2 14 2.75 13 10.69
2 −1 2 2 13 0
2 0 2 2 13 13
2 1 2 2 13 13
2 2 2 2 13 14

takes roughly some hundreds of μs which can be compared to the computational cost of a
simple overlap integral on a similar machine, which was reported to be about three orders of
magnitude lower [20]. This had to be expected, since in the latter case no numerical quadrature
is required. In addition, equation (25) shows a much higher complexity than the expression for
the overlap. An important point for calculations in extended basis sets is also apparent from
table 1. The general computational cost increases with increasing angular momentum, but the
integrals for different combinations of the magnetic quantum number come at little additional
cost. In fact, the CPU time per integral is decreasing with increasing l. This is a consequence
of the fact that the major bottleneck of this scheme is the construction of the quantity S̃n1l1n2l2

l′1l
′
2k

(23) which is independent of m.
In order to further explore the numerical efficiency of our approach, we performed test

calculations with the FT2B code of Homeier, which implements the Trivedi–Steinborn formula
and is described in detail in [41]. Using Möbius-transformation-based quadrature rules, these
authors were able to handle the highly oscillatory integrand of the remaining one-dimensional

8
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quadrature very efficiently. Utilizing the known formulae for the conversion of B-functions to
STO (see, e.g., [19]), we were able to reproduce the results of table 1, with one exception5. The
comparative timings given in table 2 were performed on the same machine and with comparable
code optimization. Since the FT2B implementation is based on complex spherical harmonics,
evaluations for different combinations of magnetic quantum numbers were necessary to obtain
Fourier transforms of real STO. This additional effort was not included in the timings, since
the Trivedi–Steinborn formula might be equally well formulated in real spherical harmonics.

We find, for the special choice of quantum numbers given in table 2, that the FT2B
implementation is superior to our approach for individual integrals by roughly a factor of four.
In general, one STO product may be represented by (�(ñ − l)/2	 + 1)2 B-function products,
so that this result is strongly parameter dependent. In applications one is usually interested
in the full set of integrals for different combinations of m-values and here our approach is
numerically more efficient as table 2 shows. These computational savings will moreover
increase with increasing angular momentum.

Code improvements are possible for both the B-function approach and for our scheme.
Homeier mentions in his dissertation [19], that storage of some intermediate quantities might
improve the performance for higher angular momentum. Our implementation might benefit
from the Möbius quadrature put forward in [41]. While the integrand is evaluated at 36 points
in theFT2B implementation, our adaptive integration requires 135 points for the same precision.
A speed-up of a factor of four seems therefore achievable.

6. Summary

In this work a compact general purpose formula for the Fourier transform of STO products
with arbitrary quantum numbers and geometrical parameters was derived. We highlighted the
relation to earlier work based on B-functions and found differences that are relevant for the
numerical efficiency. It should be stressed that the derivation presented here is completely
independent. Moreover, the final formula cannot be reduced to the Trivedi–Steinborn result by
a mere transformation from B-functions to STO. Regarding numerical stability which is often
an issue in STO related studies [43], we achieved in general a completely satisfying accuracy
apart from the known problems with very unsymmetric orbital products. We expect that the
typical computational cost of several μs per integral allows for a very efficient evaluation of
the notoriously complicated four-center electron repulsion integrals. The Fourier transform
technique hence provides a viable alternative to existing direct methods in the field.

Acknowledgments

We would like to thank Dr Homeier for helpful discussions and also for providing us with a
copy of his FT2B code.

Appendix A. Some derivatives and further definitions

The derivative of the modified McDonald function k̂ν(x) has the following simple form:

dk̂ν(x)

dx
= −xk̂ν−1(x). (A.1)

5 The case of l1 = 2, m1 = −1, l2 = 2, m2 = 2.
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In order to evaluate the quantity h
n1l1
n2l2

in (17) an expression for the repeated action of the
operator − 1

ζ
∂
∂ζ

on k̂ is required. Straightforward differentiation leads to(
− 1

ζ1

∂

∂ζ1

)l

k̂ν

(
R

√
ζ 2
u + k2u(1 − u)

) = R2lul k̂ν−l

(
R

√
ζ 2
u + k2u(1 − u)

)
,

(A.2)(
− 1

ζ2

∂

∂ζ2

)l

k̂ν

(
R

√
ζ 2
u + k2u(1 − u)

) = R2l (1 − u)l k̂ν−l

(
R

√
ζ 2
u + k2u(1 − u)

)
.

The action of the operator − ∂
∂ζ

is more involved but can be reduced to (A.2)(
− ∂

∂ζ

)n

= n!(−1)n

(2ζ )n

n∑
i=� n+1

2 	
(−2ζ 2)i

(2i − n)!(n − i)!

(
− 1

ζ

∂

∂ζ

)i

, (A.3)

which gives rise to the definitions of the coefficients cn
i (ζ ) in (24).

We now prove (A.3) by using induction. The induction basis for n = 1 is trivial. We
further have (δi,k denoting the Kronecker delta)(

− ∂

∂ζ

)(
− ∂

∂ζ

)n

=
n∑

i=� n+1
2 	

n!(−1)n+1+i2i−n

(2i − n − 1)!(n − i)!
ζ 2i−n−1(1 − δi,n/2)

(
− 1

ζ

∂

∂ζ

)i

+
n+1∑

i ′=� n+1
2 	+1

n!(−1)n+1+i ′2i ′−n−1

(2i ′ − n − 2)!(n + 1 − i ′)!
ζ 2i ′−n−1

(
− 1

ζ

∂

∂ζ

)i ′

, (A.4)

where we used the induction hypothesis and changed the summation index to i ′ = i + 1 in the
second sum. Separating the term for the lower limit i = � n+1

2 	 in the first sum and the upper
limit i ′ = n + 1 in the second sum, we arrive at(
− ∂

∂ζ

)n+1

= n!(−1)n+� n+1
2 	+12� n+1

2 	−n(
2
⌊

n+1
2

⌋− n − 1
)
!
(
n − ⌊ n+1

2

⌋)
!
ζ 2� n+1

2 	−n−1
(

1 − δ� n+1
2 	,n/2

)(
− 1

ζ

∂

∂ζ

)⌊ n+1
2

⌋

+
n∑

i=� n+1
2 	+1

(n + 1)!(−1)n+1+i2i−n−1

(2i − n − 1)!(n + 1 − i)!
ζ 2i−n−1

(
− 1

ζ

∂

∂ζ

)i

+ ζ n+1

(
− 1

ζ

∂

∂ζ

)n+1

.

(A.5)

For even n, we have
⌊

n+1
2

⌋ = n/2, and the first term in (A.5) vanishes. Since in this case⌊
n+1

2

⌋
+ 1 = ⌊ n+2

2

⌋
, it follows:(

− ∂

∂ζ

)n+1

=
n+1∑

i=� n+2
2 	

(n + 1)!(−1)n+1+i2i−n−1

(2i − n − 1)!(n + 1 − i)!
ζ 2i−n−1

(
− 1

ζ

∂

∂ζ

)i

. (A.6)

For odd n, we have
⌊

n+1
2

⌋ = (n + 1)/2, as well as
⌊

n+1
2

⌋
+ 1 = ⌊

n+2
2

⌋
+ 1. If we now extend

the second sum in (A.5) to the lower limit i = ⌊
n+2

2

⌋
the compensating term cancels exactly

the first term in (A.5). Also in this case we therefore arrive at (A.6), that is the hypothesis for
n + 1, which was to be demonstrated.

Derivatives with respect to the inter-center distance R are likewise readily obtained as(
1

R

∂

∂R

)l

R−2ν k̂ν

(
R

√
ζ 2
u + k2u(1 − u)

) = (−1)lR−2(ν+l)k̂ν+l

(
R

√
ζ 2
u + k2u(1 − u)

)
, (A.7)

where we have used the following recursion:

k̂ν+1(x) = 2νk̂ν(x) + x2k̂ν−1(x). (A.8)
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A combination of (A.2)–(A.7) leads to the second line in (23).
Finally, we define the coefficients c

l1m1l2m2
l3m3

that appear in (22). A product of two regular
harmonics with same argument can be linearized as follows:

z
m1
l1

(R)z
m2
l2

(R) =
∑
l3

∑
m3

c
l1m1l2m2
l3m3

z
m3
l3

(R)Rl1+l2−l3 . (A.9)

In terms of the Gaunt-like coefficients for the real unnormalized spherical harmonics of (4)

[l1m1|l2m2|l3m3] =
∫

Ỹl1m1(�)Ỹl2m2(�)Ỹl3m3(�) d�, (A.10)

these coefficients read

c
l1m1l2m2
l3m3

=
(

(2l3 + 1)

2π(1 + δm30)

(l3 − |m3|)!
(l3 + |m3|)!

)
[l1m1|l2m2|l3m3] . (A.11)

Please note that notation (A.10) differs from that usually employed for Gaunt coefficients
[44]. The linearization formula (A.9) may be considerably simplified by taking advantage of
the selection rules for the Gaunt-like coefficients (A.10), which were discussed by Homeier
and Steinborn [38]:

z
m1
l1

(R)z
m2
l2

(R) =
L<∑
l=0

∑
m

c
l1m1l2m2
l1+l2−2lmzm

l1+l2−2l (R)R2l

(A.12)
m ∈ {m1 + m2,m1 − m2,−m1 + m2,−m1 − m2}

Appendix B. Leibniz theorem for regular harmonics

Here we prove equation (18) of section 4

zm
l (∇)(fg) =

l∑
l′=0

l−l′∑
m′=−(l−l′)

l′∑
m′′=−l′

dlm
l′m′m′′

(
zm′
l−l′(∇)f

)(
zm′′
l′ (∇)g

)
. (B.1)

The regular harmonic zm
l (∇) is given in cartesian form as

zm
l (∇) =

l∑
i=0

l−i∑
j=0

Clm
ij

(
∂

∂x

)(i) (
∂

∂y

)(j) (
∂

∂z

)(l−i−j)

, (B.2)

where (∂/∂x)(n) denotes the nth partial derivative with respect to x and the coefficients Clm
ij

are known constants (see, e.g., [30], equations (3) and (4)). Applying the Leibniz theorem for
the differentiation of products we have

zm
l (∇)(fg) =

l∑
i=0

l−i∑
j=0

Clm
ij

i∑
i ′=0

j∑
j ′=0

l−i−j∑
k′=0

(
i

i ′

)(
j

j ′

)(
l − i − j

k′

)

×
[(

∂

∂x

)(i−i ′) (
∂

∂y

)(j−j ′) (
∂

∂z

)(l−i−j−k′)

f

]

×
[(

∂

∂x

)(i ′) (
∂

∂y

)(j ′) (
∂

∂z

)(k′)

g

]
. (B.3)
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Using now the completeness of the regular harmonics we may expand the product xiyj zk into
harmonics of angular momentum l = i + j + k:

xiyj zk =
l∑

m=−l

Bl
mzm

l (r); l = i + j + k

(B.4)
Bl

m =
∫

xiyj zkr−2lzm
l (r) d�.

Inserting this expansion into (B.3) we find

zm
l (∇)(fg) =

l∑
i=0

l−i∑
j=0

Clm
ij

i∑
i ′=0

j∑
j ′=0

l−i−j∑
k′=0

(
i

i ′

)(
j

j ′

)(
l − i − j

k′

)

×
⎡
⎣ l−i ′−j ′−k′∑

m′=−(l−i ′−j ′−k′)

B
l−i ′−j ′−k′
m′ zm′

l−i ′−j ′−k′(∇)f

⎤
⎦

×
⎡
⎣ i ′+j ′+k′∑

m′′=−(i ′+j ′+k′)

B
i ′+j ′+k′
m′′ zm′′

i ′+j ′+k′(∇)g

⎤
⎦ , (B.5)

which can be simplified after changing the summation order according to
a′∑

a=0

b′∑
b=0

c′∑
c=0

F(a, b, c) =
a′+b′+c′∑

a=0

min(a,b′)∑
b=0

min(a−b,c′)∑
c=max(0,a−b−a′)

F (a − b − c, b, c), (B.6)

for arbitrary F. With the help of the coefficients Al′
lm

Al′
lm =

l∑
i=0

l−i∑
j=0

Clm
ij

min(l′,j)∑
j ′=0

min(l′−j ′,l−i−j)∑
k′=max(0,l′−j ′−i ′)

(
i

l′ − j ′ − k′

)(
j

j ′

)(
l − i − j

k′

)
, (B.7)

with l′ = i ′ + j ′ + k′, we finally arrive at

zm
l (∇)(fg) =

l∑
l′=0

Al′
lm

l−l′∑
m′=−(l−l′)

l′∑
m′′=−l′

[
Bl−l′

m′ zm′
l−l′(∇)f

][
Bl′

m′′z
m′′
l′ (∇)g

]
, (B.8)

which is equivalent to (18) if we set dlm
l′m′m′′ = Al′

lmBl′
m′′B

l−l′
m′ .

Appendix C. Proof of equation (20)

An old theorem given by Hobson [35] (see also [28]) states that if R = (X2 + Y 2 + Z2)
1
2 and

H(X, Y,Z) is a homogeneous polynomial of degree l in the X, Y,Z variables, then

H

(
∂

∂X
,

∂

∂Y
,

∂

∂Z

)
f (R) =

l∑
k=0

2l−2k

k!
[∇2kH(X, Y,Z)]

(
∂

∂R2

)l−k

f (R). (C.1)

Taking into account that ∂
∂X

= − ∂
∂XI

= ∂
∂XJ

from R = RJ − RI , we may apply (C.1) to the
product of the regular harmonics z

m1
l1

(∇) and z
m2
l2

(∇), which is a homogeneous polynomial of
degree l1 + l2. Hence,

z
m1
l1

(∇I )z
m2
l2

(∇J )f (R) = (−1)l1
l1+l2∑
k=0

2l1+l2−2k

k!

[∇2kz
m1
l1

(R)z
m2
l2

(R)
] ( ∂

∂R2

)l1+l2−k

f (R)

= (−1)l1
l1+l2∑
k=0

2−k

k!

[∇2kz
m1
l1

(R)z
m2
l2

(R)
] ( 1

R

∂

∂R

)l1+l2−k

f (R), (C.2)
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which is the same as (20) apart from the upper limit in the sum over k. In [20] it was shown
that

∇2kzm
p (R)R2l =

⎧⎪⎨
⎪⎩

22kl!(p + l + 3/2)

(l − k)!(p + l − k + 3/2)
zm
p (R)R2l−2k : k � l

0 : k > l

(C.3)

Combining (C.2) with (A.12) and (C.3) we arrive at (20), (21) and (22) of the main paper.
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[36] Belkić D and Taylor H S 1989 Phys. Scr. 39 226
[37] Pinchon D and Hoggan P E 2007 Int. J. Quantum Chem. 107 2186
[38] Homeier H H H and Steinborn E O 1996 J. Mol. Struct. Theochem 368 31

13

http://dx.doi.org/10.1063/1.1724953
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevLett.80.3320
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<807::AID-QUA28>3.0.CO;2-F
http://dx.doi.org/10.1002/qua.1076
http://dx.doi.org/10.1103/PhysRevA.71.022508
http://dx.doi.org/10.1103/PhysRevLett.97.216405
http://dx.doi.org/10.1002/qua.560170311
http://dx.doi.org/10.1016/0021-9991(73)90151-4
http://dx.doi.org/10.1088/0022-3700/13/6/013
http://dx.doi.org/10.1103/PhysRevA.35.2729
http://dx.doi.org/10.1103/PhysRevA.37.4531.2
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevA.27.670
http://dx.doi.org/10.1103/PhysRevA.38.3857
http://dx.doi.org/10.1016/0021-9991(85)90082-8
http://dx.doi.org/10.1002/qua.21409
http://dx.doi.org/10.1002/jcc.1056
http://dx.doi.org/10.1103/PhysRevB.40.2757
http://dx.doi.org/10.1135/cccc20051225
http://dx.doi.org/10.1098/rsta.1951.0003
http://dx.doi.org/10.1007/BF00548829
http://dx.doi.org/10.1007/BF00552466
http://dx.doi.org/10.1063/1.444574
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)78:2<83::AID-QUA2>3.0.CO;2-J
http://dx.doi.org/10.1016/S0166-1280(00)00660-6
http://dx.doi.org/10.1007/BF00963467
http://dx.doi.org/10.1103/PhysRevA.42.1127
http://dx.doi.org/10.1088/0031-8949/39/2/004
http://dx.doi.org/10.1002/qua.21337


J. Phys. A: Math. Theor. 41 (2008) 485205 T A Niehaus et al
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